skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Luo, Yiqun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Excited-state properties of crystalline organic semiconductors are key to organic electronic device applications. Machine learning (ML) models capable of predicting these properties could significantly accelerate materials discovery. We use the sure-independence-screening-and-sparsifying-operator (SISSO) ML algorithm to generate models to predict the first singlet excitation energy, which corresponds to the optical gap, the first triplet excitation energy, the singlet–triplet gap, and the singlet exciton binding energy of organic molecular crystals. To train the models we use the “PAH101” dataset of many-body perturbation theory calculations within the GW approximation and Bethe–Salpeter equation (GW+BSE) for 101 crystals of polycyclic aromatic hydrocarbons (PAHs). The best performing SISSO models yield predictions within about 0.2 eV of the GW+BSE reference values. SISSO models are selected based on considerations of accuracy and computational cost to construct materials screening workflows for each property. The screening targets are chosen to demonstrate typical use-cases relevant for organic electronic devices. We show that the workflows based on SISSO models can effectively screen out most of the materials that are not of interest and significantly reduce the number of candidates selected for further evaluation using computationally expensive excited-state theory. 
    more » « less
    Free, publicly-accessible full text available May 14, 2026
  2. Abstract The excited-state properties of molecular crystals are important for applications in organic electronic devices. TheGWapproximation and Bethe-Salpeter equation (GW+BSE) is the state-of-the-art method for calculating the excited-state properties of crystalline solids with periodic boundary conditions. We present the PAH101 dataset ofGW+BSE calculations for 101 molecular crystals of polycyclic aromatic hydrocarbons (PAHs) with up to  ~500 atoms in the unit cell. To the best of our knowledge, this is the firstGW+BSE dataset for molecular crystals. The data records include theGWquasiparticle band structure, the fundamental band gap, the static dielectric constant, the first singlet exciton energy (optical gap), the first triplet exciton energy, the dielectric function, and optical absorption spectra for light polarized along the three lattice vectors. The dataset can be used to (i) discover materials with desired electronic/optical properties, (ii) identify correlations between DFT andGW+BSE quantities, and (iii) train machine learned models to help in materials discovery efforts. 
    more » « less
  3. The excited-state properties of molecular crystals are important for applications in organic electronic devices. The GW approximation and Bethe-Salpeter equation (GW+BSE) is the state-of-the-art method for calculating the excited-state properties of crystalline solids with periodic boundary conditions. We present the PAH101 dataset of GW +BSE calculations for 101 molecular crystals of polycyclic aromatic hydrocarbons (PAHs) with up to ∼500 atoms in the unit cell. The data records include the GW quasiparticle band structure, the fundamental band gap, the static dielectric constant, the first singlet exciton energy (optical gap), the first triplet exciton energy, the dielectric function, and optical absorption spectra for light polarized along the three lattice vectors. In addition, the dataset includes the density functional theory (DFT) single-molecule and crystal features used in Liu et al. [npj Computational Materials, 8, 70 (2022)]. We envision the dataset being used to (i) identify correlations between DFT and GW +BSE quantities, (ii) discover materials with desired electronic/ optical properties in the dataset itself, and (iii) train machine-learned models to help in materials discovery efforts. We provide examples to illustrate these three use cases. 
    more » « less
    Free, publicly-accessible full text available December 11, 2025
  4. The excited-state properties of molecular crystals are important for applications in organic electronic devices. The GW approximation and Bethe-Salpeter equation (GW +BSE) is the state-of-the-art method for calculating the excited-state properties of crystalline solids with periodic boundary conditions. We present the PAH101 dataset of GW +BSE calculations for 101 molecular crystals of polycyclic aromatic hydrocarbons (PAHs) with up to ∼500 atoms in the unit cell. The data records include the GW quasiparticle band structure, the fundamental band gap, the static dielectric constant, the first singlet exciton energy (optical gap), the first triplet exciton energy, the dielectric function, and optical absorption spectra for light polarized along the three lattice vectors. In addition, the dataset includes the density functional theory (DFT) single-molecule and crystal features used in Liu et al. [npj Computational Materials, 8, 70 (2022)]. We envision the dataset being used to (i) identify correlations between DFT and GW +BSE quantities, (ii) discover materials with desired electronic/ optical properties in the dataset itself, and (iii) train machine-learned models to help in materials discovery efforts. We provide examples to illustrate these three use cases. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025